
Test Coverage Metrics for the Network

Xieyang Xu
University of Washington

Ryan Beckett
Microsoft

Karthick Jayaraman
Microsoft

Ratul Mahajan
University of Washington, Intentionet

David Walker
Princeton University

ABSTRACT

Testing and verification have emerged as key tools in the battle to

improve the reliability of networks and the services they provide.

However, the success of even the best technology of this sort is

limited by how effectively it is applied, and in today’s enormously

complex industrial networks, it is surprisingly easy to overlook

particular interfaces, routes, or flows when creating a test suite.

Moreover, network engineers, unlike their software counterparts,

have no help to battle this problemÐthere are no metrics or systems

to compute the quality of their test suites or the extent to which

their networks have been verified.

To address this gap, we develop a general framework to define

and compute network coverage for stateless network data planes.

It computes coverage for a range of network components (e.g.,

interfaces, devices, paths) and supports many types of tests (e.g.,

concrete versus symbolic; local versus end-to-end; tests that check

network state versus those that analyze behavior). Our framework

is based on the observation that any network dataplane component

can be decomposed into forwarding rules and all types of tests

ultimately exercise these rules using one or more packets.

We build a system called Yardstick based on this framework

and deploy it in Microsoft Azure. Within the first month of its

deployment inside one of the production networks, it uncovered

several testing gaps and helped improve testing by covering 89%

more forwarding rules and 17% more network interfaces.

CCS CONCEPTS

· Networks→ Network management; Network monitoring;

Data center networks; · Computer systems organization→

Reliability; Availability; Maintainability and maintenance.

KEYWORDS

Coverage metrics, network verification, reliability

ACM Reference Format:

Xieyang Xu, Ryan Beckett, Karthick Jayaraman, Ratul Mahajan, and David

Walker. 2021. Test Coverage Metrics for the Network. In ACM SIGCOMM

2021 Conference (SIGCOMM ’21), August 23ś27, 2021, Virtual Event, USA.

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3452296.3472941

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCOMM ’21, August 23ś27, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8383-7/21/08. . . $15.00
https://doi.org/10.1145/3452296.3472941

1 INTRODUCTION

Network outages and breaches have a huge cost for individuals and

organizations alike, when essential services go offline, planes are

grounded, and 911 emergency calls start failing [4, 27ś29, 31]. In the

last few years, network verification and other forms of systematic

testing have emerged as keys to addressing this problem. These

techniques have rapidly gone from research ideas to production

deployments at all large cloud providers [6, 19, 30, 33, 36].

However, as we have learned from helping deploy verification

for multiple networks, outages can happen despite heavy use of

verification and testing when the users’ test suites are incomplete

and fail to test all important aspects of the network.

A glib suggestion to this problem is to say that engineers should

develop better test suites, but that is easier said than done. Networks

are complex and any long-running network has significant design

heterogeneity accumulated over the years. Given a suite of tests, it

can be nearly impossible for an engineer to judge how good the test

suite is and what it does not test. Network engineers need better

tools to make these judgements.

We draw inspiration from software testing to create such tools.

The software domain has a range of coverage metrics that quantify

the quality of test suites and provide insight into what aspects of

the software are not well covered [2, 26]. Systems that compute and

report coverage metrics are now an integral part of any software

testing platform [8, 10, 17].

In networking, however, we do not even have well-defined cover-

age metrics, let alone practical systems to compute them. We must

first define network coverage metrics. We cannot simply reuse soft-

ware metrics given differences in the two domains. Software may

be viewed as a graph of basic code blocks, where each block is

a linear sequence of statements. A simple yet effective coverage

metric is the fraction of statements or basic blocks tested. On the

other hand, network forwarding state is a set of lookup tables atop a

topology. The semantics of this state differs from linear statements.

It also affords unique opportunities. Its inputs, for instance, are

finite-length bit vectors (packets), which enables us to quantify the

input space analyzed. Such quantification is much more difficult in

general software systems with inputs of unbounded size.

A practical challenge that we face in defining and computing

network coverage is that network testing comes in many flavorsÐ

it may directly inspect the forwarding state (e.g., check that the

default route exists [11, 33]), or it may validate that the forwarding

state produces correct behavior (e.g., devices forward a prefix in

the right direction [19]); it may consider the behavior of a single

concrete test packet individually (e.g., via a traceroute [14, 35]),

or it may consider the behavior of large sets of test packets (e.g.,

via a symbolic simulation [21, 22]); and it may check individual

devices [18], or it may check end-to-end paths [6]. At the same

https://doi.org/10.1145/3452296.3472941
https://doi.org/10.1145/3452296.3472941

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA X. Xu et al.

time, we need to compute a range of metrics that quantify how

well different network components like devices, forwarding rules,

interfaces, paths, and flows are tested. As with software, different

metrics provide different lenses to analyze test suite quality, and

they reveal different types of testing blind spots. For instance, if a

test suite has high device-level coverage but low path-level coverage,

it may not be testing an important device throughwhichmany paths

traverse. Thus, we need a method to compute a range of metrics

from a range of test types without a combinatorial explosion in the

cost of testing or test analysis.

The coverage framework that we develop in this paper is based

on the concept of an atomic testable unit of network forwarding

state. An ATU is a pair of one packet and one forwarding state

rule. It is the minimal unit that any test can exercise (though tests

often exercise a rule using multiple packet or exercise multiple

rules). The impact of individual tests and the whole test suite can be

encoded using one or more ATUs. ATUs can also describe network

components for which we want to compute coverage. The ATUs of

a device include the cross-product of all of its rules and all possible

packets, and the ATUs of a flow include all the rules it touches and

its packet header space. Depending on which ATUs are covered

by tests, a component may be fully tested, partially tested, or not

tested at all. Thus, decomposing test coverage and components

into ATUs provides a mathematical basis for computing a range of

metrics from any type of test.

We build a system called Yardstick to compute coverage metrics

based on this framework. It has an online phase during which test-

ing tools report what they are testing using simple information that

is readily available, and a post-processing phase during which it

computes coverage metrics using this information. By splitting op-

eration across these two phases, we ensure that metric computation,

which can be expensive for large networks, is not on the critical

network testing pathÐa practical concern for network operators.

We deploy Yardstick in Microsoft Azure and integrate it with a

testing tool that conducts all the types of tests mentioned above.

Yardstick computes and reports several coverage metrics, providing

feedback to network engineers on the quality of the test suites

intended to evaluate if network changes are correct.

To demonstrate the value of Yardstick, we present a case study

from the first month of its deployment in one of the production

networks. Yardstick’s coverage reports helped identify several test-

ing gaps in this network. Certain types of rules and interfaces were

not being tested. This information helped engineers develop two

new types of tests that significantly improved coverageÐby 89%

for forwarding rules and 17% for interfaces. These new tests are

now part of the production test suite.

We also benchmark the performance of Yardstick using synthetic

data center networks of varying sizes. We find that the worst case

increase in testing time is only 54 seconds, which is less than 3% for

the test that takes 1967 seconds when it is not reporting coverage.

2 WHY COVERAGE METRICS

Consider the hypothetical data center network in Figure 1. It has a

three-level hierarchy, with leaf routers at the bottom that connect to

hosts (not shown), spine routers in the middle, and border routers at

the top that connect to the wide-area network (WAN). The network

Figure 1: Test coverage for an example data center net-

work. User tests check leaf-to-leaf, border-to-leaf, and leaf-

to-WAN connectivity. Red arrows show the flow of packets

from the leafs to the WAN. Forwarding table rules for B1

and B2 are shown, colored green if covered by a test and red

otherwise.

runs the BGP routing protocol [23]. Each ToR has a prefix that it

advertises inside the data center. The WAN announces the default

route (0.0.0.0/0) to the border routers, which then propagate this

route downward. The network is designed to withstand all possible

single-node failures without disrupting application connectivity.

Assume that the intended connectivity invariants are that bidi-

rectional connectivity must exist between each pair of leafs and

between each leaf and the WAN. Three tests are in place to check

these invariants. The first checks that each leaf can reach each other

leaf using packets with destinations addresses in the right prefix.

The second test checks that each leaf can reach the WAN using

packets with destination addresses outside the data center prefixes.

The third test checks that each border router can reach each leaf

using packets with the right destination addresses. With these tests,

the network engineers believe they have all their bases covered.

However, they may discover that they do not when router 𝐵1

fails and the whole data center gets disconnected from the WAN,

despite 𝐵2 being alive. It turns out 𝐵2 had a static default route that

was null routed, which caused it to not propagate the default route

to spines. So, when 𝐵1 fails, the spines have no route to the WAN.

How could the engineers in this scenario have uncovered the

issue with their tests and prevented the outage? Once you know the

exact root cause, many solutions suggest themselves. But instead

of focusing on individual bug types, we need a general approach to

uncover gaps in testing.

Coverage metrics can be the basis for that general approach.

Suppose the engineers could compute rule coverage of their tests.

Informally, thismetric is the fraction of rules in the network through

which least one test packet will pass; we formally define this metric

later. Now, because no test packet uses the default route on 𝐵2,

the coverage metric for 𝐵2 would have flagged the problem. It

would have been lower than expected and also lower than 𝐵1,

𝐵2’s symmetrically-configured counterpart. The coverage metric

Test Coverage Metrics for the Network SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

could also have helped engineers improve the test suite. Once the

underlying problem is discovered, the engineers could modify the

test to not only check that the WAN is reachable from leaves but

also that all spines and borders serve as conduits for this traffic.

3 METRIC COMPUTATION REQUIREMENTS

Network coverage metrics are intended to provide a sound basis for

judging how well different network components such as devices,

interfaces, and routes are exercised by the test suite. Exercising

the component does not mean that all related bugs are caught. A

test suite has two activities: 𝑖) exercising some components; and

𝑖𝑖) asserting that resulting behaviors match expectations. To find

bugs, the test suite must do both well. We focus on quantifying

the quality of the first activity. This focus is similar to the software

domain, where coverage metrics tend to quantify the fraction of

statements or files exercised by the test suite and leave the task of

judging the quality or assertions to other means.

3.1 Support diverse metrics and tests

We seek an approach to computing network coverage metrics that

can support a diverse set of settings. Diversity refers not only to

the types of networks (data center, backbone, etc.) and devices, but

also to the types of metrics and tests. Let us elaborate.

Support for diverse metrics. For software, many different met-

rics have been devised to quantify coverage, such as the fraction of

statements covered, the fraction of subroutines covered, the fraction

of branches for which both paths are evaluated, and the fraction of

control flow edges covered. Different metrics help software engi-

neers focus on different aspects of coverageÐfor a given test suite,

one metric may be high and another low, revealing a systematic

testing deficiency. Different metrics may also represent different

trade-offs in computation cost and bug-finding ability.

Networks too may be analyzed from many different perspectives.

An engineer might ask: Do our tests cover every device? Every

interface? Every path? Every flow? What do they say about a par-

ticular pod or about leaf routers? Each such question sheds light on

a different type of testing gap. In the example above, we saw how

rule coverage could identify the testing gap. This gap, however,

would not have been revealed by device coverage, or the fraction of

devices traversed by a test packet. Device coverage would have been

100% because every device was being traversed by at least one test.

This includes 𝐵2, which was being covered by the border-to-leaf

connectivity check (Test 2 in Figure 1).

Thus, our goal is not to devise a perfect coverage metric but

support computation of a broad range of metrics. Doing so will

enable network engineers to askmany different questions of interest

and to drill down and investigate testing gaps.

Support for diverse tests. Network engineers use several types

of tests. As shown in Figure 2, the tests can be broadly classified

into state inspection tests or behavioral tests. State inspection tests

directly inspect elements of the forwarding state and check that

it matches expectations. An example is a test that checks whether

the default route is present on a router. In contrast, behavioral

tests analyzes the device or network behavior. An example is a test

that executes a traceroute and then verifies packets emitted from a

source can in fact reach a destination.

Behavioral tests can be further classified along two dimensions:

local vs. end-to-end and concrete vs. symbolic. Local tests analyze

individual devices, often by checking if a device forwards packets to

a destination via certain interfaces. End-to-end tests reason about

network behavior across a series of devices.

A concrete behavioral test such as a traceroute checks the be-

havior of a single, concrete packet. A symbolic test might check

if any packet sent from a source will reach a destinationÐsuch

tests reason about entire classes of packets. The terms "testing" and

"verification" are sometimes used for these categories. In this paper,

we use "test" to refer to all types of tests, and use "concrete" and

"symbolic" to distinguish between the categories.

Multiple test types are often used for the same network be-

cause different types of tests have different strengths. State inspec-

tion tends to be faster; concrete tests tend to produce easier-to-

understand results; symbolic tests tend to provide stronger guaran-

tees; and local tests are more modular and efficient, while end-to-

end tests provide better indication of whether high-level, network-

wide invariants hold.

Coverage computation must thus support diverse types of tests.

Test diversity poses a challenge, however. A basic function of a

coverage metric is to enable users to judge if a new test will improve

coverage compared to existing tests. This judgement is easy within

the context of the same test type. For instance, compared to existing

traceroute tests, it is easy to tell if a new traceroute test will exercise

new network components, based on whether it uses a different

source or packet headers. But it is hard to tell if a new traceroute

test adds value compared to, say, existing symbolic tests.

3.2 Properties of metrics

To help users quantify and improve the quality of test suites, while

supporting diverse networks, metrics, and tests, we devise metrics

with the following properties.

Compositional. To compute multiple metrics for multiple test

types in a tractable fashion, the metrics must be compositional in

two ways. First, to seamlessly support diverse test types, equivalent

sets of tests should yield equivalent coverage measures. Hence, we

demand 𝑖) The coverage of a symbolic test must equal the combined

coverage of a collection of concrete tests that collectively cover

all those packets; 𝑖𝑖) The coverage of a state-inspection test must

equal the coverage of a symbolic test that considers all packets

that can be impacted by that state. Second, we should be able to

compute end-to-end coverage metrics (e.g., for network paths) by

composing the coverage metrics for a set of local tests, and compute

local coverage metrics (e.g., for individual devices) by decomposing

what is tested by end-to-end tests.

We support such compositionality by mapping tests to a set of

pairs of packet and forwarding state entry, a representation that is

independent of the test type. We then compute all coverage metrics

by taking a union of such sets. This uniform representation enables

consistent treatment of different types of tests and prevents any

double counting when multiple tests cover overlapping forwarding

state entries.

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA X. Xu et al.

State-inspection tests

Router R1’s forwarding table must have the default route entry

Router R1’s forwarding table must have an entry to prefix P with a next hop of neighbor

The access control list A1 on router R1 must have an entry that blocks packets to port 23

Behavioral tests

Local End-to-end

Concrete Router R1 must forward a given packet with dest. D via neighbor N1 Ping between two endpoints must succeed

Router R1 must drop a given packet with dest. D and port 23 Traceroute between two endpoints must traverse the firewall

Symbolic Router R1 must forward all packets to prefix P1 via neighbor N1 All packets in a defined set must succeed between two endpoints

Router R1 must drop all packets to port 23 All packets between two endpoints must traverse a firewall

Figure 2: Taxonomy of network tests with examples of each type.

Semantics-based. Network coverage metrics should be based on

the semantics of network state and independent of how devices

process the state. Different devices may have different implemen-

tations for processing state. Take longest-prefix matching (LPM)

as an example. One device may linearly scan the forwarding table

(FIB) sorted by prefix length to find the matching entry, and another

may use prefix-tries. Analogous to the software coverage metric of

fraction of lines exercised by a test, we may consider the fraction

of FIB entries inspected as our coverage metric. Per this metric, for

a test packet that matches the default route (0.0.0.0/0) entry, the

scanning-based device would have touched all the FIB entries and

the trie-based device would have touched a handful of entries. Such

device implementation-based metrics are undesirable as they are

unlikely to be aligned with network engineers’ expectations. In fact,

the engineers may be completely unaware of internal device imple-

mentations. We thus develop metrics that are based on semantics of

network state. For the case of a test packet that matches the default

route entry, we should deem that only that entry is exercised.

Monotonic and bounded. Finally, the metrics should have certain

basic numerical properties. In particular, they should be monotonic

and bounded. A metric is monotonic if adding a test to an existing

test suite never causes the metric to decrease. Formally, a metric

𝐶𝑜𝑣 is monontonic when for all test suites 𝑇 and individual tests 𝑡 :

𝐶𝑜𝑣 [𝑇] ≤ 𝐶𝑜𝑣 [𝑇 ∪ {𝑡}]

In other words, adding a new test never diminishes the value of a

test suite (though it may not always strictly increase the value).

A metric is bounded if it varies between a well-defined minimum

(0) and maximum (1). The minimum should correspond to the case

where no tests are performed, and the maximum to the case where

no further tests can possibly increase the value of the test suite.

Boundedness helps the user gauge how far their current test suite

is from full coverage, and it also helps compare coverage across

different networks and across time for the same network.

Monotonicity and boundedness together imply that users can

increase coverage by adding appropriate tests to a test suite whose

coverage is currently less than ideal. And if test suite coverage does

increase, it covers more of the network state, thus increasing the

probability of uncovering more bugs in the system.

4 DEFINING NETWORK COVERAGE

Our network coverage metrics are based on general models of

the network forwarding state and tests. We first describe these

models and then our coverage computation framework. Figure 3

summarizes our notation.

4.1 Network Model

A network 𝑁 is a 4-tuple (𝑉 , 𝐼, 𝐸, 𝑆). 𝑉 is the set of network devices,

and 𝐼 is the set of interfaces on those devices. A network location

ℓ is a pair, written 𝑣 .𝑖 , of a device 𝑣 and interface 𝑖 . The set 𝐸 con-

tains links that connect locations. Finally, 𝑆 , represents network

forwarding state. For simplicity, each device contains a set of rules

(𝑅). We write 𝑆[𝑣] for the set of rules associated with a device 𝑣 . A

more sophisticated device model will have multiple tables of rules

(e.g., forwarding rules and access-control rules). Such extensions

are straightforward but not necessary for explaining the coverage

concepts that are our focus.

Rules operate over located packets (𝑝), which include their loca-

tion (ℓ) as well as the contents of their header fields. We use 𝑃 to

denote a set of located packets. A rule 𝑟 will match some set of pack-

ets, called its match set, and apply an action to modify the matched

packets. We write𝑀[𝑟] for the match set of the rule 𝑟 and 𝐹 [𝑟] for

the action of 𝑟 . The match sets of rules do not overlap, making the

rule that applies to any packet unambiguous. In practice, rules are

ordered within tables and their match fields may match overlapping

packet sets. The first rule in a table to match a packet is applied

to the packet. In our model, such rules have been preprocessed to

eliminate overlapping match sets; our implementation computes

these match sets.

Possible actions of a rule include forwarding the packet via one

or more interfaces, dropping the packet, and transforming some

subset of header fields. In general, 𝐹 [𝑟][𝑝] is a set of located packets

𝑃 . If 𝑃 is empty, the input packet 𝑝 has been dropped. If 𝑃 contains

a single located packet 𝑝 ′, the input packet has been forwarded and

possibly transformed. If 𝑃 contains multiple packets on different

interfaces, the device has multicast the original packet. To apply

an action to a set of packets 𝑃 , we apply the action to all packets

𝑝 ∈ 𝑃 and take the union of the results.

Model limitations. Our model has static view of the network

forwarding state and assumes that all tests were run on this state.

This view is consistent with how all data plane verification tools

operateÐthey take a snapshot of network state and run all queries

Test Coverage Metrics for the Network SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

Notation Description

𝑟 /𝑅 A match-action rule/rule set.

𝑆 [𝑣] The set of rules associated with device 𝑣 .

𝑝/𝑃 A located packet/packet set.

𝑡/𝑇 Network test/test suite.

𝑀 [𝑟] The match set of the rule 𝑟 .

𝐹 [𝑟] [𝑝] The resulting packets after applying rule 𝑟 on packet 𝑝 , where 𝐹 [𝑟] is the action of the rule 𝑟 .

𝑇 [𝑟] The set of packets used to exercise 𝑟 by test suite 𝑇 .

𝑃 ▷ 𝑟1, . . . , 𝑟 𝑗 Guarded string, describing a flow of packet set 𝑃 along the path 𝑟1, . . . , 𝑟 𝑗 , see ğ4.3.1.

(𝑃𝑇 , 𝑅𝑇) Coverage trace of test suite 𝑇 , a tuple of a packet set 𝑃𝑇 and a rule set 𝑅𝑇 , see ğ5.2.

Figure 3: Network coverage concepts and notations.

on it. But it may lose precision for live network tests (e.g., ping or

traceroute) if the state changes during test suite runs.

4.2 Modeling Network Tests

A test, be it a concrete traceroute or a symbolic analysis, checks

whether the network handles some packets correctly by 1) consult-

ing the network forwarding state, 2) computing packet transforma-

tion and forwarding, and 3) comparing the result with user-specified

expectations. Coverage is determined by analyzing the forwarding

state consulted in the first step and the set of packets considered

in the second step. An Atomic Testable Unit, or ATU, (𝑟, 𝑝) is our

primitive measure of coverageÐit indicates a test has exercised rule

𝑟 on located packet 𝑝 .

Wemodel a test 𝑡 as a (total) function from rules to sets of packets.

When 𝑡[𝑟] = 𝑃 , we say that the test 𝑡 has exercised rule 𝑟 using

packets 𝑃 . Alternatively, we say that test 𝑡 covers packets 𝑃 for

rule 𝑟 . When 𝑃 = {𝑝1, . . . , 𝑝𝑘 }, the corresponding set of ATUs is

{(𝑟, 𝑝1), . . . , (𝑟, 𝑝𝑘)}. Note that the set of packets 𝑃 cannot exceed

the match-set of 𝑟 .

The covered set of a test is the union of all packets covered for

any rule 𝑟 . That is, the covered set for 𝑡 is 𝑡[𝑟1] ∪ · · · ∪ 𝑡[𝑟𝑘] when

𝑟1, . . . , 𝑟𝑘 is the set of all rules in the network. Likewise, the ATUs

for 𝑡 are {(𝑟, 𝑝) | 𝑣 ∈ 𝑉 , 𝑟 ∈ 𝑆 [𝑣], 𝑝 ∈ 𝑡[𝑟]}.

To illustrate these concepts, when 𝑡[𝑟] is the empty set, 𝑟 has not

been exercised by the test at all. When 𝑡[𝑟] equals the match set

of 𝑟 , 𝑟 has been completely tested. Often, 𝑡[𝑟] will be somewhere

in between, indicating that a rule has been partially tested. For

example, when representing a traceroute test, 𝑡[𝑟] will be {𝑝} for

some packet 𝑝 for each rule 𝑟 along the traceroute path and empty

set for each rule 𝑟 not on the path. When representing a symbolic

test, 𝑡[𝑟] may consist of many packets rather than just one.

A test suite 𝑇 is simply a set of tests: {𝑡1, . . . , 𝑡𝑘 }. In a slight

abuse of notation, we often treat test suites as functions from rules

to packets. Applying a test suite to a rule yields the union of the

packets tested by all tests in the suite:

𝑇 [𝑟] = 𝑡1[𝑟] ∪ · · · ∪ 𝑡𝑘 [𝑟]

The ATUs for a test suite are defined in the obvious way as the

union of the ATUs of the underlying tests in the suite.

Model discussion. An ATU represents the finest granularity of

the impact of a test. An alternative is to use rules as atomic units.

However, that would have rendered the coverage framework un-

able to distinguish between a concrete test, like a traceroute, that

exercises a portion of the rule with a single packet and a symbolic

test that exercises more of the rule over many packets.

A limitation of our model is that it cannot account for coverage

of stateful networks accurately. If a rule 𝑟 uses a switch register

or another stateful component, exercising it once on a particular

packet may not suffice to test it completely. Since ATUs (𝑟, 𝑝) do

not track the state space covered by applications of 𝑟 to packets

𝑝 , our coverage metrics will be blind to the amount of the state

space covered. We followed common software-testing frameworks

in making this choice. They too typically measure coverage in terms

of lines of code rather than state spaces covered per line of code. In

both networks and software, tracking the state space covered may

be prohibitively expensive. Thankfully, many network data planes

are stateless, obviating the need to track state in such contexts.

4.3 Coverage Metrics

Given the models of the network state and tests, we can now define

coverage metrics. Given our goal of supporting a diverse range

of metrics, we developed a common framework for computing

coverage for a variety of network components such as rules, devices,

and paths. Below, we first describe this framework and then how

different components map to it.

4.3.1 A framework for computing coverage.

Our framework computes the coverage of an individual compo-

nent (e.g., a device or rule); the coverage of multiple components

of interest can then be aggregated (ğ 4.3.3). The specification to

compute the coverage of a network component has three parts:

• a dependency specification 𝐺 ,

• a coverage measure 𝜇, and

• a combinator 𝜅.

The dependency specification 𝐺 describes the dependencies of

a componentÐwhat needs to be tested to test that component.

Specifically, 𝐺 = {𝑔1, . . . , 𝑔𝑘 } is a set of guarded strings, where a

guarded string 𝑔 = 𝑃 ▷ 𝑟1, . . . , 𝑟 𝑗 is a located packet set 𝑃 followed

by a list of rules 𝑟1, . . . , 𝑟 𝑗 .
1 The packet set 𝑃 is the guard. The

network engineer is interested in the flow of those packets along

1Guarded strings are a natural unit of interest in network data planes. They were also
used to provide semantics to NetKAT expressions [3].

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA X. Xu et al.

the path 𝑟1, . . . , 𝑟 𝑗 where 𝑟1 through 𝑟 𝑗 are rules that form a valid

path (i.e., 𝑟𝑖 forwards to 𝑟𝑖+1).

If the engineer is interested in understanding coverage of a single

device with three rules then the dependency specification might

be {𝑃1 ▷ 𝑟1, 𝑃2 ▷ 𝑟2, 𝑃3 ▷ 𝑟3}. In this case, each łpathž is only one

rule as long as we are not interested in multi-rule paths. The packet

spaces 𝑃1, 𝑃2 and 𝑃3 might be the match sets of the rules.

The coverage measure 𝜇 evaluates the extent to which a test

suite𝑇 covers a guarded string 𝑔 in𝐺 . It must be a function from𝑇

and 𝑔 to a number between 0 and 1, with higher values implying

higher coverage. For instance, given 𝑔 = 𝑃 ▷ 𝑟 , a measure might

return 1 if there exists a test that exercises the rule 𝑟 on a packet

𝑝 ∈ 𝑃 and 0 otherwise. Alternatively, a measure might return the

ratio of packets 𝑝 ∈ 𝑃 that a test exercises on 𝑟 . When considering

a path 𝑔 = 𝑃 ▷ 𝑟1, . . . , 𝑟 𝑗 , a measure could determine the minimal

fraction of any rule’s match set in the path covered by a test.

Finally, the combinator 𝜅 produces an overall coverage metric

for a component by mapping sets of measures to measures. Such

combinators might compute the average of the given measures or

use the min or the max value to report coverage for the component;

as discussed below, different choices are appropriate for different

sorts of component.

Formally, given combinator 𝜅, measure 𝜇, and specification 𝐺

for a component, the coverage of test suite𝑇 for that component is:

𝐶𝑜𝑚𝑝𝐶𝑜𝑣 [𝑇] (𝜅, 𝜇,𝐺) = 𝜅 (map (𝜇 [𝑇])𝐺) (1)

The function map(𝑓) (𝑆) applies 𝑓 to every element of the set 𝑆 .

Since network operators are interested not only in coverage of

a single device or flow, our framework also defines coverage over

collections of components (e.g., all devices in the network). This

coverage of is programmable as well. Given an aggregator 𝛼 and

a specification of the collection 𝐶 = {(𝜅1, 𝜇1,𝐺1), . . . , (𝜅𝑘 , 𝜇𝑘 ,𝐺𝑘)},

we can define the overall coverage of a test suite as follows.

𝐶𝑜𝑣 [𝑇] (𝛼,𝐶) = 𝛼 (map (𝐶𝑜𝑚𝑝𝐶𝑜𝑣 [𝑇])𝐶) (2)

ğ4.3.2 illustrates the use of Equation (1) by providing concrete

specification for common network components, and ğ4.3.3 describes

some useful aggregation functions for Equation (2) to summarize

coverage for multiple components.

4.3.2 Coverage for common network components.

We show how to analyze coverage for the most common network

components: rules, devices, interfaces, paths, and flows. Other com-

ponents, such as the CoFlows [9] of a distributed application (i.e.

the set of flows generated by the application) or all traffic traversing

a firewall, can be analyzed similarly.

Rule coverage. Rule coverage quantifies the extent to which a net-

work rule is covered by a test suite. Given a rule 𝑟 , the dependency

specification is 𝐺 = {𝑀 [𝑟] ▷ 𝑟 }. The coverage measure adopted

is 𝜇 =

|𝑇 [𝑟] |
|𝑀 [𝑟] |

, which quantifies the fraction of the rule’s match set

covered by the test suite. This ratio will always be less than one

because 𝑇 [𝑟] ⊆ 𝑀 [𝑟]. The combinator 𝜅 for this metric simply

picks the only element in this singleton set.

Device coverage. Device coverage quantifies how well the for-

warding state of the device is covered. Given a device with 𝑘 rules,

its dependency specification is 𝐺 = {𝑀 [𝑟1] ▷ 𝑟1, · · ·𝑀 [𝑟𝑘] ▷ 𝑟𝑘 }.

Device coverage uses the same measure 𝜇 as rule coverage. Its com-

binator 𝜅 is the weighted average, where the weight is proportional

to a rule’s match set, that is, the weight for 𝑟𝑖 is
|𝑀 [𝑟𝑖] |

Σ1≤ 𝑗≤𝑘 |𝑀 [𝑟 𝑗] |
. This

way, device coverage reports the fraction of total packets against

which the device as a whole has been tested.

Interface coverage. Interface coverage quantifies how well the

state responsible for packets leaving or entering an interface is

tested. For instance, engineers may evaluate outgoing interface

coverage of border interfaces when they are interested in packets

leaving the data center. The coverage specification for an interface

is similar to that of a device except that the set of rules considered is

limited to those relevant to the interface. For an outgoing interface,

this set has all the rules that forward packets to the interface. For

an incoming interface, it has all the rules that have the interface in

their match sets, as we limit the corresponding packet guards to

only those on the interface.

Path coverage. A path is a valid sequence of rules and path cov-

erage is intended to quantify how well the forwarding state along

a path is tested. The dependency specification of the path is 𝐺 =

{𝑃 ▷ 𝑟1, ..., 𝑟𝑘 }, where 𝑟1, ..., 𝑟𝑘 is the sequence of rules that define

the path, and 𝑃 is the full set of located packets that can traverse the

path. This set is not known apriori but can be compute by process-

ing the forwarding state. It includes packets whose headers may

get transformed along the way. It does not include packets that are

dropped at an intermediate rule 𝑟 𝑗<𝑘 in the sequence; those packets

will be part of the 𝑟1, ..., 𝑟 𝑗 path.

The measure 𝜇 of a path quantifies the fraction of 𝑃 that has

been tested through the entire sequence of rules. If different rules

of the path were tested using disjoint sets of packets, the coverage

will be zero, as no one packet has made it all the way across the

path. This calculation proceeds rule by rule and computes at each

hop the set of packets that remain under consideration. Formally:

𝑃𝑖 =

{

𝑀 [𝑟1] if 𝑖 = 0

𝐹 [𝑟𝑖] [𝑃𝑖−1 ∩𝑇 [𝑟𝑖]] otherwise
(3)

𝑃𝑖 is the set of packets after rule 𝑟𝑖 has been processed. In the be-

ginning, it is𝑀 [𝑟1] (match set of 𝑟1). After processing 𝑟𝑖 , it changes

to the set obtained by applying the action of 𝑟𝑖 to the intersection

of 𝑃𝑖−1 and 𝑟𝑖 ’s tested set. The final coverage is
|𝑃𝑘 |
|𝑃 |

, the fraction

of packets left at the end.2

Paths have only one guarded string, and hence 𝜅 selects the only

element of this singleton set as its result.

Flow coverage. A flow can be defined using its source location

and header space. When this flow is injected into the network, it

traverses one or more paths (due to possible multi-path routing or

different headers in the header space being forwarded differently).

The dependency specification of the flow has a guarded string

corresponding to each of its paths, and each such string has the

flow’s packets as the guard. The coverage measure is the same

2We have presented a simplified view that assumes that any packet transformations
are one-to-one, so rule application preserves the number of packets in the set. To
support one-to-many and many-to-one transformations, our system does a slightly
more complex computation. It computes another sequence of packet sets 𝑃 ′𝑖 that is not

constrained by𝑇 [𝑟𝑖], by replacing it with𝑀 [𝑟𝑖] in the equation. It then computes
𝑃𝑖
𝑃′
𝑖
at each hop and takes the minimum ratio across all hops.

Test Coverage Metrics for the Network SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

Figure 4: Overview of Yardstick.

as that for a path. The combinator is weighted average, where

the weight is proportional to fraction of flow’s packets that will

use a path, computed by processing the network state. We are thus

computing the fraction of flow’s dependencies that have been tested

end-to-end. If the coverage is 75%, it means that state corresponding

to 75% of the flow’s packet stream has been tested end-to-end.

4.3.3 Coverage for component collections.

We illustrated above how to compute coverage for individual compo-

nents, but users will commonly be interested in aggregate coverage

across multiple components of the same type. We currently support

three forms of aggregator 𝛼 , each of which provides a different

perspective on how well components in the collection are covered.

• Simple average: Compute the (unweighted) mean coverage

across components. Average device coverage will thus be the mean

of the coverage of all devices under consideration. This aggregation

provides a simple, overall view of how well devices are covered.

• Weighted average: Compute the weighted average coverage

across all components, where the weight is the size of packet space

handled by the component. This aggregation gives a higher weight

to components that handle more packets. Rules that match more

packets (e.g., the default route) will thus have a higher weight,

encouraging engineers to cover them with a higher priority.

• Fractional coverage: Often we simply want to know what frac-

tion of components have been tested at all. The fractional coverage

aggregator maps the coverage of individual components in the col-

lection to 0 or 1, based on whether the coverage is 0 or non-zero,

and then computes the mean. If fractional device coverage is 80%,

then 20% of the devices are completely untested and users would

likely want to investigate why.

5 YARDSTICK DESIGN

Our system, Yardstick, is based on the formulation above. Its design

is guided by the need to minimize impact on testing performance.

This goal is important because some testing tools are in the critical

path of network updates [20, 22] and testing delays will delay up-

dates. In other settings, testing performance dictates how quickly a

network state bug will be caught after it appears.

With this consideration, we split the operation of Yardstick

across two phases, shown in Figure 4. The first phase tracks cover-

age reported by the testing tool, using two simple API calls:

• markPacket(P)

• markRule(r)

The markPacket call is used for behavioral tests, to report the located

packets 𝑃 used in tests. The markRule call is used for state inspection

tests, to report which rules in the network are inspected.

The coverage tracker stores the information provided by test-

ing tools in a compact representation, called the coverage trace

(ğ5.2). The format of the coverage trace enables memory and time

efficiency for both tracking and computing phases.

After testing finishes, in the second phase, Yardstick uses the

coverage trace and network state to compute the requested coverage

metrics. Since all the data is available, the network engineer can

at any time ask the system to compute new metrics and zoom in

from aggregate to individual component metrics.

Yardstick can be used with any testing tool that can be instru-

mented to call its APIs. Originally, we attempted a design that did

not use explicit APIs such as markPacket, but snooped state read

operations and registered coverage for elements of the state read

during testing. This design assumed that all state elements read by

the tool are exercised. Unfortunately, however, symbolic testing

often requires that state be read in bulk up front to build internal

data structures. It may not necessarily exercise all the data read.

Our chosen APIs enable easy integration with a range of testing

tools. The information they need is readily available. Yardstick takes

on the work to translate this information into what is needed for

coverage computation. We discuss this next.

5.1 Using Coverage Tracking APIs

Different types of tests described in ğ3.1 can use our APIs to report

coverage information with minimal overhead.

State inspection tests. These tests inspect forwarding state rules,

e.g., check whether a default route exists on a device. The coverage

of inspecting a rule is its match set, so the information we need for

metric computation is 𝑡 [𝑟] = 𝑀 [𝑟].

However, 𝑀 [𝑟] is not readily available to the testing tool (be-

cause the match field of the rule is not necessarily its match set,

given earlier overlapping rules in the table) and it can take time to

compute for large tables. Yardstick thus requires tools to just report

the tested rule via markRule(r), and it then computes𝑀 [𝑟] in the

second phase to minimize the burden on the testing tool.

Local behavioral tests. These tests inject a located packet set 𝑃

into the device and then validate that the device processes (drops or

forwards) the packets as expected. Different testing tools compute

the result of the device processing differently; it could be concrete

simulation, symbolic simulation, or SMT constraints. Regardless

of the method, the information we need from the perspective of

coverage, is which rules were exercised using which subsets of 𝑃

(given 𝑃 may exercised multiple rules).

Unfortunately, this information is not computed by all tools as

part of their testing, and computing it can be expensive. Yardstick

thus requires the tools to just report 𝑃 using markPacket(P) and

derive the rule-level coverage information from it later.

End-to-end behavioral tests. Coverage for these tests is reported

using markPacket(P) as well but a separate call is made for each hop

in the network with the packet set at that hop. We did consider an

alternative in which testing tool would report the packet set at only

the origin instead of each hop and we would then infer the hop-

level information. But we deemed that alternative not worthwhile

because the tools already have hop-level information available.

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA X. Xu et al.

Operation Description

PacketSet empty() Return an empty set of packets

PacketSet negate(P) Return the set of packets not in the input set

PacketSet union(P1, P2) Return the union of two packet sets

PacketSet intersect(P1, P2) Return the intersection of two packet sets

Boolean equal(P1, P2) Return if two packet sets are equal

PacketSet fromRule(rule) Convert the match field of a rule to the corresponding set of packets

Long count(P) Return the number of packets in the set

Figure 5: Operations over packet sets to help compute coverage.

Algorithm 1: Compute covered sets 𝑇 [𝑟]

Input: Network 𝑁 = (𝑉 , 𝐼, 𝐸, 𝑆), Test suite 𝑇

1 Procedure ComputeCoveredSets()

2 for r ∈
⋃

𝑣∈𝑉 𝑆 [𝑣] do

3 if 𝑟 in 𝑅𝑇 then

4 𝑇 [r] ← 𝑀 [r]

5 else

6 𝑇 [r] ← intersect(𝑃𝑇 , 𝑀 [r])

7 return {𝑇 [𝑟𝑖] | 𝑟𝑖 ∈
⋃

𝑣∈𝑉 𝑆 [𝑣]}

5.2 Computing Coverage Metrics

During test execution (Phase 1), Yardstick stores the union of all

information reported by the testing tool in the coverage trace. The

trace can be represented using the tuple (𝑃𝑇 , 𝑅𝑇), where 𝑃𝑇 is the

set of located packets across all markPacket API calls, and 𝑅𝑇 is a

set of rules across all markRule API calls. Yardstick does not keep

the entire log and removes overlapping information on the fly.

After test execution (Phase 2), Yardstick uses the coverage trace

to compute the requested metrics. This computation can be de-

scribed using operations over packet sets shown in Figure 5. We

compute coverage in three steps.

Step 1: Compute rulematch sets.Wefirst compute match sets

of rules using the forwarding state. Our network and test models

have disjoint match sets for rules in the same table. Given a device 𝑣

and its forwarding rules 𝑆 [𝑣], we compute the disjoint match set of

each rule by walking the ordered list of device rules, computing the

match set of each as the intersection of its match field and packets

not matched so far [32].

Step 2: Compute covered sets. From the coverage trace (𝑃𝑇 , 𝑅𝑇),

we compute the covered sets of all rules in the network using Al-

gorithm 1. If a rule exists in 𝑅𝑇 (reported by inspection tests), its

covered set is its match set. Otherwise, it is the intersection of its

match set and tested packets 𝑃𝑇 .

Step 3: Compute coveragemetrics. In the final step, Yardstick

computes the component-level and aggregate coverage metrics, us-

ing the framework of ğ4.3. These computations are straightforward

for all metrics except for path-based metrics. Unlike other metrics,

information about neither the set of covered paths nor the number

of all paths is readily available in the coverage trace. For bounded-

ness (ğ3), we need the number of all paths as the denominator for

aggregate metricsśif we see 10 paths in the coverage data, is that

out of 10 possible paths (100% covered) or 1000 (1% covered)? This

count may be known for some types of structured networks but

not in the general case.

When the count of paths is not known apriori, we consider all

possible paths imputed by the network forwarding state as the

total number of paths. All possible paths cannot be computed based

on topology alone because many unrealistic zigzag paths (e.g., a

20-hop leaf-spine-leaf-spine· · · path) will inflate the path count.

We thus use the network forwarding state to compute paths that

carry non-zero traffic. Computing the path count in this manner

has risks because network state bugs can change the count.3 We

can guard against this risk by flagging to the user when the size of

path universe changes dramatically relative to prior state snapshots.

Absent major operational changes to the network, this universe is

not expected to change significantly from day-to-day.

We compute the path universe by symbolically exploring the

journey of all possible headers from all starting locations. This

traversal is depth-first on the topology and emits new paths in-

crementally (i.e., first a single-hop path with the source, then a

two-hop path with the source and its first neighbor, assuming that

the source sends a non-empty set of packets to this neighbor, and

so on). We do not store all paths in memoryśthere can be 100s of

millions of paths in a large networkÐbut process them on the fly.

Processing a path involves computing its coverage using the

coverage trace per Equation (3). When a path is emitted, we know

its sequence of rules. We do not know its guard set of packets.

Strictly speaking, we do not need to know which packets are in the

guard set; we only need to know the size of this set. In the common

case, when any transformations along the path are only one-to-one,

this size is the same as that of the final packet set at the end of our

path exploration, and we use that size. In other cases, we compute

the guard set by reversing the forwarding operations using the final

set of packets. At each hop this computes the input set of packets

that can produce the output set. We encode rule actions as BDDs,

which allows for quickly doing such computations.

6 SYSTEM IMPLEMENTATION

Yardstick is implemented using 2300 lines of C# code, not counting

the lines in various third-party libraries. The packet set operations

in Figure 5 are implemented using binary decision diagrams (BDDs)

that can efficiently encode and manipulate large header spaces.

3Path-based metrics in the software domain have the same risk.

Test Coverage Metrics for the Network SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

We also instrumented a testing tool to report coverage to Yard-

stick. This tool is deployed in Microsoft Azure and supports all the

test types mentioned in ğ3.1. Because the information Yardstick

needs is readily available, we had to change only 7 lines of tool’s

code to report coverage. Each such line was an API call inserted

at an appropriate place in the testing logic. Yardstick links to the

tool as a dynamic library, and the two share type definitions for

objects such as packet sets. Such an integration helps eliminate

serialization-deserialization overhead. (Other tools integrated with

Yardstick would likely incur higher data processing overhead.)

By default, Yardstick computes coverage for all device, interface,

and rule coverage in the network. Users can customize the coverage

report in a few different ways. They can request path coverage,

which is not computed by default because of its high computational

cost (ğ8). Users can also narrow the coverage analysis to particular

flows by specifying the flows’ start locations and header spaces.

Finally, users can zoom in on a subset of components by pro-

viding a binary function that takes in the component and returns

true if that component should be considered. This filtering option

is helpful when users want to analyze coverage for, say, only leaf

routers or only inside-to-outside paths. In the future, we plan to let

users provide a coverage specification directly, allowing them to

compute coverage for a richer set of component types.

7 CASE STUDY

Yardstick is deployed in Azure as part of a service to evaluate the

impact of changes to production networks. The service computes

the network forwarding state that results from the change and

then uses a test suite to check if the state is correct. We present

a case study based on one month of Yardstick deployment in one

of the networks. Its coverage reports identified systematic testing

gaps in the original test suite and helped improve the test suite by

suggesting new tests to address those gaps. These new tests are

now part of the network’s test suite.

7.1 Network Overview

Our case study focuses on a regional network that interconnects

hundreds of thousands of hosts across multiple data centers in the

same geographic region.

Topology and routing. Each datacenter network is a hierarchical

Clos topology [13]. The top-of-rack (ToR) routers are at the bottom,

and they directly connect to hosts. Aggregation routers connect the

top-of-rack routers together in pods, which in turn are connected

via a set of spine routers. At the top of each data center, the spine

routers are connected to multiple layers of regional hub routers [24]

which interconnect datacenters within a region. The regional hub

routers are further connected to wide-area backbone routers that

provide connectivity to the Internet and to other regions.

The network uses eBGP routing protocol on all routers [23].

Each router is assigned a private BGP ASN based on its role in

the datacenter and configured with the allow-as-in command to

avoid rejecting valid paths as loops [23] (e.g., a ToR1-Aggregation1-

ToR2 path is legal even though the two ToRs have the same ASN).

As a fail safe, every router is also configured with a default static

route (for the prefix 0.0.0.0/0) that forwards packets to connected,

higher-layer ("northern") neighbors. In the event of many kinds of

failures, this backup measure ensures that packets will still have

connectivity. For redundancy and load balancing, eBGP equal cost

multipath (ECMP) is enabled on all routers.

Each ToR connects to hosts via Ethernet interfaces with assigned

subnets, and, to enable connectivity to those hosts, it advertises

aggregated prefixes for its directly connected hosts into the eBGP

routing protocol. In addition, each router has one or more loopback

interfaces whose corresponding connected routes are injected into

eBGP via route redistribution.

Testing Pipeline. The network undergoes frequent changes in

response to planned maintenance, migrations, and policy updates.

All major changes are rigorously tested prior to deployment using

a two-step process. An in-house simulator [25] and emulator [24]

compute the network forwarding state that will result from the

change. This state is then tested using a test suite defined by net-

work engineers. Test execution produces a pass-fail report that

network operators analyze to determine if the change is safe. Hu-

man oversight is needed here because it is possible that tests may

fail as a result of modeling error or transient failures.

Yardstick has been integrated into this pipeline, where it aug-

ments the test results with coverage metrics. Its output is analyzed

by a network engineer to improve the test suite and by network

operators to determine the safety of the change.

7.2 Identifying Testing Gaps

Prior to the introduction of Yardstick, the network’s testing pipeline

used a collection of tests of two types:

(1) DefaultRouteCheck: a subset of RCDC [19] contracts related

to the default route that check that default routes have the

correct set of next hops. This a state-inspection test.

(2) AggCanReachTorLoopback: check that the aggregation routers

correctly forward packets for ToR routers’ loopback inter-

faces. This is a local symbolic test.

Figure 6a shows the coverage that Yardstick reported for this test

suite. We break results by router type and plot fractional averages

(ğ4.3.3) for devices, rules, and interfaces. We also plot the weighted

average for rules; weighted average for devices and interfaces (not

shown) was similar to that for rules. This view of the data was

particularly useful toward understanding testing effectiveness and

gaps for this network.

We see that fractional device coverage is close to perfect for

all types of routers.4 This high coverage is because the Default-

RouteCheck covers all devices. Device coverage is slightly low for

regional hub routers because some of those routers are not expected

to have the default route, and so the test excludes them.

Interface coverage, on the other hand, is quite uneven. It is high

for aggregation routers because of the AggCanReachTorLoopback

test but low for other router types. If the default route is not using

the interface, it is not being tested at all. Thus, primarily northbound

interfaces (i.e., toward the higher layers in the hierarchy) are tested.

Rule coverage tells an interesting story and also shows the value

of different types of aggregations. Fractional rule coverage is really

4Yardstick did actually reveal some completely untested devices in the network. This
discovery was initially surprising to engineers. It later became clear that the untested
devices were legacy routers that could not be tested. We have excluded such devices
from our analysis.

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA X. Xu et al.

0%

25%

50%

75%

100%

ToR
Router

Aggregation
Router

Spine
Router

Regional
Hub

C
o

v
e

ra
g

e

Device (fractional)
Interface (fractional)

Rule (fractional)
Rule (weighted)

(a) Original test suite

0%

25%

50%

75%

100%

ToR
Router

Aggregation
Router

Spine
Router

Regional
Hub

C
o

v
e

ra
g

e

Device (fractional)
Interface (fractional)

Rule (fractional)
Rule (weighted)

(b) InternalRouteCheck test

0%

25%

50%

75%

100%

ToR
Router

Aggregation
Router

Spine
Router

Regional
Hub

C
o

v
e

ra
g

e

Device (fractional)
Interface (fractional)

Rule (fractional)
Rule (weighted)

(c) ConnectedRouteCheck test

0%

25%

50%

75%

100%

ToR
Router

Aggregation
Router

Spine
Router

Regional
Hub

C
o

v
e

ra
g

e

Device (fractional)
Interface (fractional)

Rule (fractional)
Rule (weighted)

(d) Final test suite

Figure 6: Coverage for different tests.

lowÐmost of the bars for this measure are indistinguishable from

0 in Figure 6aÐindicating that the vast majority of the rules are

untested. But weighted rule coverage, which weighs each rule by

the size of the match set, is high because the default route matches

the vast majority of the destination IP address space (anything

that is not covered by a more specific rule). This data supports the

engineers’ intuition to prioritize default routes in their testing.

Low fractional rule coverage became the catalyst for identifying

testing gaps. Focusing on forwarding rules that Yardstick reported

as untested, we identified three categories of routes.

(1) Internal routes. Each device has many prefixes to destinations

that are internal to the region. These include prefixes for

hosts connected to ToRs and prefixes of loopback interfaces

on all routers.

(2) Connected routes. Each device has connected routes that cor-

respond to its physical and aggregated interfaces, which

have statically configured /31 (IPv4) and /126 (IPv6) prefixes.

Because these prefixes are used for point-to-point connec-

tions only, they are not redistributed into the global eBGP

routing protocol. Yardstick flagged that none of these con-

nected routes, and many of their associated interfaces, were

untested.

(3) Wide-area routes. Yardstick revealed that routers in the upper

layers of each data center had particularly low rule coverage.

Upon further investigation, we found that these rules were

for routes learned from the wide-area network, which are

advertised to the regional hub and spine layers but are not

leaked into lower layers.

At first blush, it may appear that a system like Yardstick is an

overkill for identifying such gapsśengineers should have known

about them based on their knowledge of the network and the test

suite. But the real-world aspects of this challenge are worth noting.

First, the engineers who originally developed the test suite can be

different from those who are now responsible for maintaining and

improving it. It can be difficult for the latter group to look at the old

test code and judge what the tests are not covering. Second, real net-

works lose their original design simplicity and symmetry over time.

This evolution makes it difficult to reason about network structure

in one’s head, to accurately identify which components are tested

and which ones are not. The coverage information that Yardstick

provides from various perspectives is thus key to comprehensively

and reliably identifying testing gaps.

Yardstick also makes it easy to focus one’s efforts on the most

productive kind of test developmentÐthe creation new tests that

provably improve coverageÐrather than on development of redun-

dant tests that do little to find additional errors in networks. We

discuss the new tests developed for our network next.

7.3 Toward a High-coverage Test Suite

After identifying the testing gaps above, the engineers authored

two new tests for the network.

(1) InternalRouteCheck. This test validates that all prefixes that

originate within the datacenter (i.e., the internal destina-

tions) are forwarded through and only through the full set of

topological shortest paths. The design of the network is such

that internal destinations are routed along shortest paths

Test Coverage Metrics for the Network SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

0%

25%

50%

75%

100%

Start: Original
Test Suite

Add: Internal
Route Check

Add: Connected
Route Check

C
o
v
e
ra

g
e

Device (fractional)
Interface (fractional)

Rule (fractional)
Rule (weighted)

Figure 7: Coverage improvement with test suite iterations.

and there are many such paths. The test is implemented as a

local symbolic test that uses RCDC’s idea [19] of decompos-

ing an end-to-end invariant into local forwarding contracts

that dictate the next hops for a prefix at a device. Suppose a

device 𝑣 originates a set of prefixes {𝑝𝑣}, which include host

subnets and loopback addresses. To compute the local con-

tracts for {𝑝𝑣}, the test first perform a breadth-first search

from 𝑣 to compute shortest distances from all other devices.

If the device 𝑣 ′ is 𝑑-hops away from 𝑣 , it should then forward

{𝑝𝑣} to all its neighbors with distance of 𝑑 − 1 to 𝑣 .

(2) ConnectedRouteCheck. This test validates that both ends of a

physical link have the connected route to the assigned /31

and /126 prefixes. It is a state-inspection test.

The engineers have yet to define a test for wide-area routes,

the third gap that Yardstick helped identify. The challenge is that

there is not yet any specification of the routes to expect from the

wide-area network.

The two tests above are now deployed.5 The coverage of these

tests is shown in Figures 6b and 6c. InternalRouteCheck covers over

90% of the rules on ToR and aggregation routers, and around 50%

on spine and regional hub routers. Its impact differs across router

types based on the fraction of internal routes that a type contains.

ConnectedRouteCheck covers nearly 100% of the interfaces on all

routers except for ToRs.

The coverage for the final test suite, after adding these two tests

to the original test suite, is shown in Figure 6d. The coverage is

substantially higher than before. But fractional rule coverage on

spine routers and regional hubs is only around 50% (because of

untested wide area routes). Fractional interface coverage on ToR

routers is only 25%. This coverage level is similar to that of the

original test suite and of the two new tests individually, indicating

that all tests are covering the same set of interfaces. We discovered

that host-facing interfaces are not being tested, and as a result, will

be developing another new test for these interfaces soon.

Figure 7 summarizes the coverage improvement across all de-

vices during the course of our study. Within the first month of its

5These tests did not identify unique bugs during the study. All discovered bugs were
shallow and were flagged by the DefaultRouteCheck as well. However, one cannot
rely on bugs being always shallow. Yardstick enabled the engineers to add tests that
improve coverage, which improves the chances of finding additional bugs and increases
confidence in the correctness of network changes.

deployment, Yardstick helped improve rule coverage by 89% and

interface coverage by 17%.

8 PERFORMANCE EVALUATION

We conducted controlled experiments to benchmark the perfor-

mance of Yardstick along two measures of interest: 𝑖) the overhead

of tracking coverage when the tests are running; and 𝑖𝑖) the time it

takes to compute the metrics after the tests are done. We generate

synthetic fat-tree networks [1] of different sizes by varying the

topology parameter 𝑘 between 8 and 88, which generates networks

of up to 9680 routers. Each ToR has one hosted prefix, and network

routing functions as described in ğ7.1.

All experiments were performed on a desktop PC with an 8C8T

Intel CPU running at 4.9 GHz and 16 GB of DRAM.

8.1 Overhead of coverage tracking

We measure the overhead of coverage tracking by running tests

with and without tracking enabled. We consider four types of tests:

• DefaultRouteCheck is the state-inspection test mentioned

earlier. It determines whether each switch has a default route

that forwards to higher-layer neighbors.

• ToRReachability is an end-to-end symbolic test. It checks

that all packets that originate at a ToR with a destination IP

address in the hosted prefix of another ToR can reach the

correct ToR.

• ToRContract is a local symbolic test. It checks the same in-

variants as ToRReachability, but does so by decomposing the

invariant into a local forwarding contract for each router.

ToRContract is a subset of RCDC [19].

• ToRPingmesh is an end-to-end concrete test. It checks the

same invariants as as ToRReachability, but samples a single

address from each prefix instead of reasoning about all pack-

ets. The idea of testing ToR pairs using concrete packets is

drawn from Pingmesh [14].

Figure 8 shows the time to execute each test with and without

coverage tracking enabled. We see that the overhead of coverage

tracking is small. The worst case absolute time overhead is 54

seconds, which occurs for the ToRReachability test in the largest

topology. In this case, the baseline (coverage disabled) test time is

1967 seconds, and thus the relative overhead is only 2.8%.

The worst case relative overhead is 52%, which occurs for De-

faultRouteCheck in the topology with 6480 nodes. In this case, the

baseline test time is only 0.79 seconds. (State-inspection tests are

lightweight.) Across all cases where the baseline test takes over a

minute, the relative overhead of tracking coverage is under 10%.

8.2 Performance of coverage computation

After the tests finish, Yardstick computes coverage metrics using

the coverage trace and network state. Figure 9 shows the computa-

tion time for different components (when computed by itself) as a

function of network size. The coverage trace for this experiment is

from the tests in the previous section. We show results for fractional

averages; performance is similar for other aggregations.

We see that local metrics (i.e., device, interface, and rule coverage)

are reasonably fast to compute. Each metric is computed in less

than 90 seconds, even on the largest topology. We also find that

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA X. Xu et al.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

 0 2000 4000 6000 8000 10000

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Fat-tree Scale (Number of Routers)

ToRPingmesh
ToRReachability
ToRContract
DefaultRouteCheck

Figure 8: Overhead of coverage tracking. The lines show the

test execution timewithout coverage tracking, and the error

bars show the time with coverage tracking.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

 0 2000 4000 6000 8000 10000

1 hour limit

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Fat-tree Scale (Number of Routers)

Device (fractional)
Interface (fractional)

Rule (fractional)
Path (fractional)

Figure 9: Time to compute coverage metrics.

because a fair bit of processing is shared among these metrics (e.g.,

computing match sets of rules), computing all of them together

takes only 91 seconds (not shown in the graph).

Path coverage, on the other hand, is computationally expensive.

It takes 45 minutes on the 2880-node network. On larger networks,

its execution time exceeds the 1-hour timeout we used for these

experiments. This metric is expensive because it requires iterating

over all possible paths in the topology. As our networks use multi-

path routing, doing so becomes prohibitive beyond a certain point.

Network engineers that we have talked to mentioned that Yard-

stick is efficient enough to be useful in practice. Coverage metrics

are not expected to change significantly at short time scales unless

the network state or the test suite changes significantly. The en-

gineers thus mentioned computing path-based expensive metrics

once a day, while relying on the local metrics to more quickly catch

regressions in testing.

9 RELATED WORK

Our work builds on two distinct lines of research. The first line

of research involves network testing and verification tools [11,

14, 15, 19, 21, 22, 32, 33]. These tools have developed a range of

techniques for scalable analysis of network data and control planes.

We have borrowed some of these ideas (e.g., the use of BDDs) to

compute coverage metrics efficiently. However, the goals of our

research are different from, and complementary to, this past work:

we have developed metrics that systematically quantify how well

verification and testing tools have been put to use by network

engineers in practical industrial settings.

Second, we borrow from the software domain the idea of using

coverage metrics to quantify test suite quality and reveal testing

gaps. There, many metrics have been developed over the years to

help software engineers [5, 12, 16]. Our network coverage metrics

are specialized for operation over network forwarding state.

We share with ATPG [34] the goal of improving network testing.

ATPG crafts test packets that exercise each rule in the network

forwarding state to validate that routers indeed forward the packet

as per their state. It thus improves testing that aims to find bugs in

device software and hardware responsible for forwarding packets.

In contrast, we improve testing that aims to find bugs in the for-

warding state itself. In service of this goal, we also develop several

notions of coverage beyond rule coverage.

We introduced the idea of using coverage metrics to improve the

use of network verification in a position paper [7]. That paper did

not develop a computational basis or a system to compute coverage

metrics, nor did it report on experience of using coverage metrics

to improve test infrastructure of large-scale, industrial networks.

10 CONCLUSION

We described a framework to define and compute network coverage

metrics, to help engineers judge and improve the quality of their

test suites. To be able to compute a range of metrics using a diverse

set of tests, it is based on decomposing both the state exercised

by testing and network components into atomic testable units. We

built our system Yardstick based on this framework and deployed

it in Microsoft Azure. Within the first month of deployment in one

of the production networks, Yardstick helped expand testing to 17%

more network interfaces and 89% more rules.

These results notwithstanding, we believewe have barely scratched

the surface of network coverage metrics. For software, the devel-

opment of coverage metrics and usable systems has been a multi-

decade journey that still continues. We expect networking to take

a similar journey, with researchers developing increasingly sophis-

ticated metrics for a range of settings. The framework developed

in this paper can provide a useful starting point for that journey.

ACKNOWLEDGMENTS

We thank the anonymous SIGCOMM ’21 reviewers and our shep-

herd, Aman Shaikh, for feedback on earlier versions of this paper.

This work was supported in part by NSF grants CNS-2007073 and

CNS-1703493.

This work does not raise any ethical issues.

Test Coverage Metrics for the Network SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

REFERENCES
[1] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A Scalable,

Commodity Data Center Network Architecture. In Proceedings of SIGCOMM ’08.
ACM, 63ś74.

[2] Paul Ammann and Jeff Offutt. 2016. Introduction to Software Testing. Cambridge
University Press.

[3] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter
Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT: Semantic Foundations
for Networks. In Proceedings of POPL ’14. ACM, 113ś126.

[4] Mae Anderson. 2014. TimeWarner Cable Says Outages Largely Resolved. Retrieved
June 23, 2021 from http://www.seattletimes.com/business/time-warner-cable-
says-outages-largely-resolved

[5] James H Andrews, Lionel C Briand, Yvan Labiche, and Akbar Siami Namin. 2006.
Using mutation analysis for assessing and comparing testing coverage criteria.
IEEE Transactions on Software Engineering 32, 8 (2006), 608ś624.

[6] John Backes, Sam Bayless, Byron Cook, Catherine Dodge, Andrew Gacek, Alan J
Hu, Temesghen Kahsai, Bill Kocik, Evgenii Kotelnikov, Jure Kukovec, et al. 2019.
Reachability analysis for AWS-based networks. In International Conference on
Computer Aided Verification. Springer, 231ś241.

[7] Ryan Beckett and Ratul Mahajan. 2019. Putting Network Verification to Good
Use. In Proceedings of HotNets ’19. ACM, 77ś84.

[8] Larry Brader, Howie Hilliker, and AlanWills. 2013. Testing for Continuous Delivery
with Visual Studio 2012. Microsoft.

[9] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. 2014. Efficient coflow sched-
uling with varys. In Proceedings of SIGCOMM ’14. ACM, 443ś454.

[10] Codecov. 2021. CodeCov: The leading code coverage solution. Retrieved June 23,
2021 from https://about.codecov.io/

[11] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan,
Ratul Mahajan, and Todd Millstein. 2015. A General Approach to Network
Configuration Analysis. In Proceedings of NSDI 15. USENIX Association, 469ś
483.

[12] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Mohammad Amin
Alipour, and Darko Marinov. 2013. Comparing Non-Adequate Test Suites Using
Coverage Criteria. In Proceedings of the 2013 International Symposium on Software
Testing and Analysis (ISSTA 2013). 302ś313.

[13] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. 2009. VL2: A Scalable and Flexible Data Center Network. In Proceedings
of SIGCOMM ’09. ACM, 51ś62.

[14] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave
Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis
Kurien. 2015. Pingmesh: A Large-Scale System for Data Center Network Latency
Measurement and Analysis. In Proceedings of SIGCOMM ’15. ACM, 139ś152.

[15] Alex Horn, Ali Kheradmand, and Mukul Prasad. 2017. Delta-net: Real-time Net-
work Verification Using Atoms. In Proceedings of NSDI 17. USENIX Association,
735ś749.

[16] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. 1994. Ex-
periments on the effectiveness of dataflow-and control-flow-based test adequacy
criteria. In Proceedings of 16th International conference on Software engineering.
IEEE, 191ś200.

[17] Marko Ivanković, Goran Petrović, René Just, and Gordon Fraser. 2019. Code
coverage at Google. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 955ś963.

[18] Karthick Jayaraman, Nikolaj Bjùrner, Geoff Outhred, and Charlie Kaufman. 2014.
Automated analysis and debugging of network connectivity policies. Technical
Report. 1ś11 pages. https://www.microsoft.com/en-us/research/wp-content/up
loads/2016/02/secguru.pdf

[19] Karthick Jayaraman, Nikolaj Bjùrner, Jitu Padhye, Amar Agrawal, Ashish Bhar-
gava, Paul-Andre C Bissonnette, Shane Foster, AndrewHelwer, Mark Kasten, Ivan

Lee, Anup Namdhari, Haseeb Niaz, Aniruddha Parkhi, Hanukumar Pinnamraju,
Adrian Power, Neha Milind Raje, and Parag Sharma. 2019. Validating Datacenters
at Scale. In Proceedings of SIGCOMM ’19. ACM, 200ś213.

[20] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McKe-
own, and Scott Whyte. 2013. Real Time Network Policy Checking Using Header
Space Analysis. In Proceedings of NSDI 13. USENIX Association, 99ś111.

[21] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space
Analysis: Static Checking for Networks. In Proceedings of NSDI 12. USENIX
Association, 113ś126.

[22] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P Brighten
Godfrey. 2013. Veriflow: Verifying network-wide invariants in real time. In
Proceedings of NSDI 13. USENIX Association, 15ś27.

[23] Petr Lapukhov, Ariff Premji, and Jon Mitchell. 2016. Use of BGP for routing in
large-scale data centers. Internet Requests for Comments RFC Editor RFC 7938
(2016).

[24] Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao, Sri Tallapragada, Nuno P.
Lopes, Andrey Rybalchenko, Guohan Lu, and Lihua Yuan. 2017. CrystalNet:
Faithfully Emulating Large Production Networks. In Proceedings of SOSP ’17.
ACM, 599ś613.

[25] Nuno P Lopes and Andrey Rybalchenko. 2019. Fast bgp simulation of large
datacenters. In International Conference on Verification, Model Checking, and
Abstract Interpretation. Springer, 386ś408.

[26] Glenford J. Myers, Corey Sandler, and Tom Badgett. 2012. The art of software
testing (3rd ed ed.). John Wiley & Sons.

[27] Steve Ragan. 2016. BGP errors are to blame for Monday’s Twitter outage, not DDoS
attacks. Retrieved June 23, 2021 from https://www.csoonline.com/article/313893
4/security/bgp-errors-are-to-blame-for-monday-s-twitter-outage-not-ddos-
attacks.html

[28] Deon Roberts. 2018. It’s been aweek and customers are still mad at BB&T. Retrieved
June 23, 2021 from https://www.charlotteobserver.com/news/business/banking/
article202616124.html

[29] Yevgeniy Sverdlik. 2017. United Says IT Outage Resolved, Dozen Flights Canceled
Monday. Retrieved June 23, 2021 from https://www.datacenterknowledge.com/
archives/2017/01/23/united-says-it-outage-resolved-dozen-flights-canceled-
monday

[30] Bingchuan Tian, Xinyi Zhang, Ennan Zhai, Hongqiang Harry Liu, Qiaobo Ye,
Chunsheng Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang, Da Yu, Chen
Tian, Haitao Zheng, and Ben Y. Zhao. 2019. Safely and Automatically Updating In-
Network ACL Configurations with Intent Language. In Proceedings of SIGCOMM
’19. ACM, 214ś226.

[31] ZachWhittaker. 2020. T-Mobile hit by phone calling, textmessage outage. Retrieved
June 23, 2021 from https://techcrunch.com/2020/06/15/t-mobile-calling-outage/

[32] Hongkun Yang and Simon S. Lam. 2016. Real-time Verification of Network
Properties Using Atomic Predicates. IEEE/ACM Trans. Netw. 24, 2 (April 2016),
887ś900.

[33] Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu, Bingchuan Tian, Qiaobo
Ye, Chunsheng Wang, Xin Wu, Tianchen Guo, Cheng Jin, Duncheng She, Qing
Ma, Biao Cheng, Hui Xu, Ming Zhang, Zhiliang Wang, and Rodrigo Fonseca.
2020. Accuracy, Scalability, Coverage: A Practical Configuration Verifier on a
Global WAN. In Proceedings of SIGCOMM ’20. ACM, 599ś614.

[34] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. 2012.
Automatic test packet generation. In Proceedings of the 8th international conference
on Emerging networking experiments and technologies. 241ś252.

[35] Hongyi Zeng, Ratul Mahajan, Nick McKeown, George Varghese, Lihua Yuan, and
Ming Zhang. 2015. Measuring and Troubleshooting Large Operational Multipath
Networks with Gray Box Testing. Technical Report MSR-TR-2015-55 (Microsoft
Research).

[36] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar, Mickey Ju, Junda
Liu, Nick McKeown, and Amin Vahdat. 2014. Libra: Divide and Conquer to
Verify Forwarding Tables in Huge Networks. In Proceedings of NSDI 14. USENIX
Association, 87ś99.

http://www.seattletimes.com/business/time-warner-cable-says-outages-largely-resolved
http://www.seattletimes.com/business/time-warner-cable-says-outages-largely-resolved
https://about.codecov.io/
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/secguru.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/secguru.pdf
https://www.csoonline.com/article/3138934/security/bgp-errors-are-to-blame-for-monday-s-twitter-outage-not-ddos-attacks.html
https://www.csoonline.com/article/3138934/security/bgp-errors-are-to-blame-for-monday-s-twitter-outage-not-ddos-attacks.html
https://www.csoonline.com/article/3138934/security/bgp-errors-are-to-blame-for-monday-s-twitter-outage-not-ddos-attacks.html
https://www.charlotteobserver.com/news/business/banking/article202616124.html
https://www.charlotteobserver.com/news/business/banking/article202616124.html
https://www.datacenterknowledge.com/archives/2017/01/23/united-says-it-outage-resolved-dozen-flights-canceled-monday
https://www.datacenterknowledge.com/archives/2017/01/23/united-says-it-outage-resolved-dozen-flights-canceled-monday
https://www.datacenterknowledge.com/archives/2017/01/23/united-says-it-outage-resolved-dozen-flights-canceled-monday
https://techcrunch.com/2020/06/15/t-mobile-calling-outage/

	Abstract
	1 Introduction
	2 Why coverage metrics
	3 Metric Computation Requirements
	3.1 Support diverse metrics and tests
	3.2 Properties of metrics

	4 Defining Network Coverage
	4.1 Network Model
	4.2 Modeling Network Tests
	4.3 Coverage Metrics

	5 Yardstick Design
	5.1 Using Coverage Tracking APIs
	5.2 Computing Coverage Metrics

	6 System Implementation
	7 Case Study
	7.1 Network Overview
	7.2 Identifying Testing Gaps
	7.3 Toward a High-coverage Test Suite

	8 Performance Evaluation
	8.1 Overhead of coverage tracking
	8.2 Performance of coverage computation

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

